at a time before terminal velocity is reached at terminal velocity.	round.	P	1
at a time before terminal velocity is reached		(
at a time before terminal velocity is reached			
at a time before terminal velocity is reached			
at a time before terminal velocity is reached			
at a time before terminal velocity is reached at terminal velocity.			
at a time before terminal velocity is reached at terminal velocity.			
at terminal velocity.			
at terminal velocity.			
at terminal velocity.			
at terminal velocity.			
at terminal velocity.			
at terminal velocity.			
at terminal velocity			
	[6]		

(b)	In the final stage of the fall, the skydiver is falling through air at a constant speed. The skydiver's kinetic energy does not change even though there is a decrease in the gravitational potential energy. State what happens to this loss of gravitational potential energy.
(c)	Fig. 3.1 shows a sketch graph of the variation of the velocity v of the skydiver with time t . $ \frac{v/\text{m s}^{-1}}{25} = \frac{50}{0} = \frac{1}{10} = \frac{1}{10$
	Fig. 3.1
	Suggest the changes to the graph of Fig. 3.1, if any, for a more massive (heavier) skydiver of the same shape.
	[Total: 9

2 (a) Fig. 5.1 shows a wooden block motionless on an inclined ramp.

Fig. 5.1

The angle between the ramp and the horizontal is θ .

- (i) The weight *W* of the block is already shown on Fig. 5.1. Complete the diagram by showing the normal contact (reaction) force *N* and the frictional force *F* acting on the block. [2]
- (ii) Write an equation to show how F is related to W and θ .
- **(b)** Fig. 5.2 shows a kitchen cupboard securely mounted to a vertical wall. The cupboard rests on a support at **A**.

Fig. 5.2

The total weight of the cupboard and its contents is 200 N. The line of action of its weight is at a distance of 12 cm from **A**. The screw securing the cupboard to the wall is at a vertical distance of 75 cm from **A**.

(1)	State the principle of moments.
	In your answer, you should use appropriate technical terms, spelled correctly.
	[2]
(ii)	The direction of the force F provided by the screw on the cupboard is horizontal as shown in Fig. 5.2. Take moments about $\bf A$. Determine the value of F .
	F=N [2]
(iii)	The cross-sectional area under the head of the screw in contact with the cupboard is $6.0 \times 10^{-5} \mathrm{m}^2$. Calculate the pressure on the cupboard under the screw head.
	pressure =Pa [2]
(iv)	State and explain how your answer to (iii) would change, if at all, if the same screw was secured much closer to A .
	[2]
	[Total: 11]

In February 1999 NASA launched its Stardust spacecraft on a mission to collect dust particles from the comet Tempel 1. After a journey of 5.0×10^{12} m that took 6.9 years, Stardust returned to Earth with samples of the dust particles embedded in a special low-density gel. When a dust particle hits the gel, it buries itself in the gel creating a cone-shaped track as shown in Fig. 6.1. The length of the track is typically 200 times the diameter of the dust particle.

Fig. 6.1

(a) Calculate the average speed in m s⁻¹ of Stardust during its voyage.

(b) Calculate the average stopping force produced by the gel for a dust particle of diameter $0.70 \,\mathrm{mm}$ and mass $4.0 \times 10^{-6} \,\mathrm{kg}$ travelling at a velocity of $6.1 \times 10^{3} \,\mathrm{m\,s^{-1}}$ relative to Stardust.

4		State how the magnitude of the drag force on an object is affected by its speed.
		[1]
(b)	Des	cribe the experiments Galileo carried out which overturned Aristotle's ideas of motion.
		[3]

(c)	A s	kydiver is falling towards the ground at a terminal velocity of $50\mathrm{ms^{-1}}$.
	(i)	State the two main forces acting on the skydiver and how they are related at termina velocity.
		[1]
	(ii)	The skydiver opens her parachute. After some time, the skydiver reaches a lower terminal velocity of $4.0\mathrm{ms^{-1}}$. Describe and explain how the magnitude of the deceleration of the skydiver changes as her velocity reduces from $50\mathrm{ms^{-1}}$ to $4.0\mathrm{ms^{-1}}$.
		[4]
		[Total: 9]

5 (a) Fig. 7.1 shows several forces acting on an object that is free

Fig. 7.1

Using simple calculations, deduce whether the object will move into region 1, 2, 3 or 4. Briefly explain your reasoning.

		[2
(b)	State the <i>principle of moments</i> .	
		•••
		Γ1 [°]

(c) Fig. 7.2 shows the forces acting on a suitcase with wheels as it is held stationary.

Fig. 7.2

A vertical force of $50\,\mathrm{N}$ is applied to the top of the handle in order to keep the suitcase stationary in the position shown in Fig. 7.2. The line of action of this force acts at a perpendicular distance of 46 cm from **P**, the point of contact with the ground. The line of action of the weight of the suitcase acts at a perpendicular distance of $32\,\mathrm{cm}$ from the top of the handle.

By taking moments about \mathbf{P} , calculate the mass m of the suitcase.

 $m = \dots kg [3]$

[Total: 6]

- 6 Thinking and braking distances are important quantities when considering road safety.
 - (a) The driver of a car travelling at constant speed sees a hazard ahead at time t = 0. The reaction time of the driver is 0.5 s. On Fig. 3.1, sketch a graph of distance travelled by the car against time t during this interval of 0.5 s.

Fig. 3.1 [1]

(b)	Explain the shape of your graph in Fig. 3.1.
	[1]
(c)	Define braking distance.
	[1]
(d)	Apart from the conditions of the tyres, brakes, road surface and weather, state two other factors that affect the braking distance of a car. For each factor, discuss how it affects the braking distance.

(e)	Describe and explain how seat belts reduce the forces on a driver during the impact in an accident.
	[3]
	[Total: 10]